10 research outputs found

    A hybrid technique for face detection in color images

    Get PDF
    In this paper, a hybrid technique for face detection in color images is presented. The proposed technique combines three analysis models, namely skin detection, automatic eye localization, and appearance-based face/nonface classification. Using a robust histogram-based skin detection model, skin-like pixels are first identified in the RGB color space. Based on this, face bounding-boxes are extracted from the image. On detecting a face bounding-box, approximate positions of the candidate mouth feature points are identified using the redness property of image pixels. A region-based eye localization step, based on the detected mouth feature points, is then applied to face bounding-boxes to locate possible eye feature points in the image. Based on the distance between the detected eye feature points, face/non-face classification is performed over a normalized search area using the Bayesian discriminating feature (BDF) analysis method. Some subjective evaluation results are presented on images taken using digital cameras and a Webcam, representing both indoor and outdoor scenes

    Enhancing person annotation for personal photo management using content and context based technologies

    Get PDF
    Rapid technological growth and the decreasing cost of photo capture means that we are all taking more digital photographs than ever before. However, lack of technology for automatically organising personal photo archives has resulted in many users left with poorly annotated photos, causing them great frustration when such photo collections are to be browsed or searched at a later time. As a result, there has recently been significant research interest in technologies for supporting effective annotation. This thesis addresses an important sub-problem of the broad annotation problem, namely "person annotation" associated with personal digital photo management. Solutions to this problem are provided using content analysis tools in combination with context data within the experimental photo management framework, called “MediAssist”. Readily available image metadata, such as location and date/time, are captured from digital cameras with in-built GPS functionality, and thus provide knowledge about when and where the photos were taken. Such information is then used to identify the "real-world" events corresponding to certain activities in the photo capture process. The problem of enabling effective person annotation is formulated in such a way that both "within-event" and "cross-event" relationships of persons' appearances are captured. The research reported in the thesis is built upon a firm foundation of content-based analysis technologies, namely face detection, face recognition, and body-patch matching together with data fusion. Two annotation models are investigated in this thesis, namely progressive and non-progressive. The effectiveness of each model is evaluated against varying proportions of initial annotation, and the type of initial annotation based on individual and combined face, body-patch and person-context information sources. The results reported in the thesis strongly validate the use of multiple information sources for person annotation whilst emphasising the advantage of event-based photo analysis in real-life photo management systems

    Semi-automatic video object segmentation for multimedia applications

    Get PDF
    A semi-automatic video object segmentation tool is presented for segmenting both still pictures and image sequences. The approach comprises both automatic segmentation algorithms and manual user interaction. The still image segmentation component is comprised of a conventional spatial segmentation algorithm (Recursive Shortest Spanning Tree (RSST)), a hierarchical segmentation representation method (Binary Partition Tree (BPT)), and user interaction. An initial segmentation partition of homogeneous regions is created using RSST. The BPT technique is then used to merge these regions and hierarchically represent the segmentation in a binary tree. The semantic objects are then manually built by selectively clicking on image regions. A video object-tracking component enables image sequence segmentation, and this subsystem is based on motion estimation, spatial segmentation, object projection, region classification, and user interaction. The motion between the previous frame and the current frame is estimated, and the previous object is then projected onto the current partition. A region classification technique is used to determine which regions in the current partition belong to the projected object. User interaction is allowed for object re-initialisation when the segmentation results become inaccurate. The combination of all these components enables offline video sequence segmentation. The results presented on standard test sequences illustrate the potential use of this system for object-based coding and representation of multimedia

    Facial features and appearance-based classification for face detection in color images

    Get PDF
    A technique is presented for frontal face detection in color images based on facial feature extraction and appearance-based classification. Salient facial features are used to define a search space that is then used in a classification step in order to find the best position of the face in the image. Mouth feature points are identified using the redness property of image pixels whilst eye feature points are detected using a search strategy applied to a subset of regions in a fine region-based segmentation of the candidate face. Face class modeling based on a multivariate normal distribution and discriminating feature analysis is used as the face classification method. The utilization of facial features in this system avoids analyzing the image at every pixel location as well as at multiple scales when detecting faces of different sizes

    An interactive and multi-level framework for summarising user generated videos

    Get PDF
    We present an interactive and multi-level abstraction framework for user-generated video (UGV) summarisation, allowing a user the flexibility to select a summarisation criterion out of a number of methods provided by the system. First, a given raw video is segmented into shots, and each shot is further decomposed into sub-shots in line with the change in dominant camera motion. Secondly, principal component analysis (PCA) is applied to the colour representation of the collection of sub-shots, and a content map is created using the first few components. Each sub-shot is represented with a ``footprint'' on the content map, which reveals its content significance (coverage) and the most dynamic segment. The final stage of abstraction is devised in a user-assisted manner whereby a user is able to specify a desired summary length, with options to interactively perform abstraction at different granularity of visual comprehension. The results obtained show the potential benefit in significantly alleviating the burden of laborious user intervention associated with conventional video editing/browsing

    Identifying person re-occurrences for personal photo management applications

    Get PDF
    Automatic identification of "who" is present in individual digital images within a photo management system using only content-based analysis is an extremely difficult problem. The authors present a system which enables identification of person reoccurrences within a personal photo management application by combining image content-based analysis tools with context data from image capture. This combined system employs automatic face detection and body-patch matching techniques, which collectively facilitate identifying person re-occurrences within images grouped into events based on context data. The authors introduce a face detection approach combining a histogram-based skin detection model and a modified BDF face detection method to detect multiple frontal faces in colour images. Corresponding body patches are then automatically segmented relative to the size, location and orientation of the detected faces in the image. The authors investigate the suitability of using different colour descriptors, including MPEG-7 colour descriptors, color coherent vectors (CCV) and color correlograms for effective body-patch matching. The system has been successfully integrated into the MediAssist platform, a prototype Web-based system for personal photo management, and runs on over 13000 personal photos

    MediAssist: Using content-based analysis and context to manage personal photo collections

    Get PDF
    We present work which organises personal digital photo collections based on contextual information, such as time and location, combined with content-based analysis such as face detection and other feature detectors. The MediAssist demonstration system illustrates the results of our research into digital photo management, showing how a combination of automatically extracted context and content-based information, together with user annotation, facilitates efficient searching of personal photo collections

    Automatic text searching for personal photos

    Get PDF
    This demonstration presents the MediAssist prototype system for organisation of personal digital photo collections based on contextual information, such as time and location of image capture, and content-based analysis, such as face detection and recognition. This metadata is used directly for identification of photos which match specified attributes, and also to create text surrogates for photos, allowing for text-based queries of photo collections without relying on manual annotation. MediAssist illustrates our research into digital photo management, showing how a combination of automatically extracted context and content-based information, together with user annotation and traditional text indexing techniques, facilitates efficient searching of personal photo collections
    corecore